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a Axial induction factor
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a′ Angular induction factor

B Number of blades

c Aerofoil chord length

CL Lift coefficient

CD Drag coefficient

CP Power coefficient

D Drag force

Fx Axial force

Fθ Tangential force

L Lift force, angular moment

ṁ Massflow

N Number of blade elements

p Pressure

P Power

Q Tip loss correction factor

r radius and radial direction

R Blade tip radius

T Torque

V Absolute velocity

W Relative velocity

x Axial coordinate

β Relative flow angle onto blades

λ Tip speed ratio

λr Local Tip speed ratio

η Mechanical/electrical efficiency

ρ Density

σ′ Local Solidity

3



Wind Turbine Blade Analysis Durham University

θ Tangential coordinate

Ω Blade rotational speed

ω Wake rotational speed

γ Aerofoil inlet angle
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Figure 1: Axial Stream tube around a Wind Turbine

1 Introduction

This short document describes a calculation method for wind turbine blades, this
method can be used for either analysis of existing machines or the design of new
ones. More sophisticated treatments are available but this method has the advan-
tage of being simple and easy to understand.

This design method uses blade element momentum (or BEM) theory to com-
plete the design and can be carried out using a spreadsheet and lift anddrag curves
for the chosen aerofoil.

The latest version of this document should be available from theauthor’s website1

Any comments on the document would be gratefully received. Further details on
Wind Turbine Design can be found inManwell et al.(2002) which provides com-
preshensive coverage of all aspects of wind energy.Walker and Jenkins(1997) also
provide a comprehensive but much briefer overview of Wind Energy.

2 Blade Element Momentum Theory

Blade Element Momentum Theory equates two methods of examining how a wind
turbine operates. The first method is to use a momentum balance on a rotating
annular stream tube passing through a turbine. The second is to examine theforces
generated by the aerofoil lift and drag coefficients at various sectionsalong the
blade. These two methods then give a series of equations that can be solved itera-
tively.

3 Momentum Theory

3.1 Axial Force

Consider the stream tube around a wind turbine shown in Figure1. Four stations
are shown in the diagram 1, some way upstream of the turbine, 2 just before the

1http://www.dur.ac.uk/g.l.ingram
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blades, 3 just after the blades and 4 some way downstream of the blades. Between
2 and 3 energy is extracted from the wind and there is a change in pressure as a
result.

Assumep1 = p4 and thatV2 = V3. We can also assume that between 1 and 2
and between 3 and 4 the flow is frictionless so we can apply Bernoulli’s equation.
After some algebra:

p2− p3 =
1
2

ρ(V 2
1 −V 2

4 ) (1)

Noting that force is pressure times area we find that:

dFx = (p2− p3)dA (2)

⇒ dFx =
1
2

ρ(V 2
1 −V 2

4 )dA (3)

Definea the axial induction factor as:

a =
V1−V2

V1
(4)

It can also be shown that:

V2 =V1(1−a) (5)

V4 =V1(1−2a) (6)

Substituting yields:

dFx =
1
2

ρV 2
1 [4a(1−a)]2πrdr (7)

3.2 Rotating Annular Stream tube

Consider the rotating annular stream tube shown in Figure2. Four stations are
shown in the diagram 1, some way upstream of the turbine, 2 just before theblades,
3 just after the blades and 4 some way downstream of the blades. Between 2and 3
the rotation of the turbine imparts a rotation onto the blade wake.

Consider the conservation of angular momentum in this annular stream tube.
An “end-on” view is shown in Figure3. The blade wake rotates with an angular
velocity ω and the blades rotate with an angular velocity ofΩ. Recall from basic
physics that:

Moment of Inertia of an annulus,I = mr2 (8)

Angular Moment,L = Iω (9)

Torque,T =
dL
dt

(10)

⇒ T =
dIω
dt

=
d(mr2ω)

dt
=

dm
dt

r2ω (11)
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Figure 2: Rotating Annular Stream tube

So for a small element the corresponding torque will be:

dT = dṁωr2 (12)

For the rotating annular element

dṁ = ρAV2 (13)

dṁ = ρ2πrdrV2 (14)

⇒ dT = ρ2πrdrV2ωr2 = ρV2ωr22πrdr (15)

Define angular induction factora′:

a′ =
ω

2Ω
(16)

Recall thatV2 =V (1−a) so:

dT = 4a′(1−a)ρV Ωr3πdr (17)

Momentum theory has therefore yielded equations for the axial (Equation7)
and tangential force (Equation17) on an annular element of fluid.

4 Blade Element Theory

Blade element theory relies on two key assumptions:

• There are no aerodynamic interactions between different blade elements

• The forces on the blade elements are solely determined by the lift and drag
coefficients

7
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Figure 3: Rotating Annular Stream tube: notation.

Figure 4: The Blade Element Model

Consider a blade divided up intoN elements as shown in Figure4. Each of
the blade elements will experience a slightly different flow as they have a differ-
ent rotational speed (Ωr), a different chord length (c) and a different twist angle
(γ). Blade element theory involves dividing up the blade into a sufficient number
(usually between ten and twenty) of elements and calculating the flow at each one.
Overall performance characteristics are determined by numerical integration along
the blade span.
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Figure 5: Flow onto the turbine blade

4.1 Relative Flow

Lift and drag coefficient data area available for a variety of aerofoils from wind
tunnel data. Since most wind tunnel testing is done with the aerofoil stationarywe
need to relate the flow over the moving aerofoil to that of the stationary test. To do
this we use the relative velocity over the aerofoil. More details on the aerodynam-
ics of wind turbines and aerofoil selection can be found inHansen and Butterfield
(1993).

In practice the flow is turned slightly as it passes over the aerofoil so in order
to obtain a more accurate estimate of aerofoil performance an average of inlet and
exit flow conditions is used to estimate performance.

The flow around the blades starts at station 2 in Figures2 and1 and ends at
station 3. At inlet to the blade the flow is not rotating, at exit from the blade row
the flow rotates at rotational speedω. That is over the blade row wake rotation has
been introduced. The average rotational flow over the blade due to wakerotation is
thereforeω/2. The blade is rotating with speedΩ. The average tangential velocity
that the blade experiences is thereforeΩr+ 1

2ωr. This is shown in Figure5.
Examining Figure5 we can immediately note that:

Ωr+
ωr
2

= Ωr(1+a′) (18)

Recall that (Equation5): V2 =V1(1−a) and so:

tanβ =
Ωr(1+a′)
V (1−a)

(19)

WhereV is used to represent the incoming flow velocityV1. The value ofβ will
vary from blade element to blade element. The local tip speed ratioλr is defined
as:

λr =
Ωr
V

(20)
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Figure 6: Forces on the turbine blade.

So the expression for tanβ can be further simplified:

tanβ =
λr(1+a′)
(1−a)

(21)

From Figure5 the following relation is apparent:

W =
V (1−a)

cosβ
(22)

4.2 Blade Elements

The forces on the blade element are shown in Figure6, note that by definition the
lift and drag forces are perpendicular and parallel to the incoming flow. For each
blade element one can see:

dFθ = dLcosβ−dDsinβ (23)

dFx = dLsinβ+dDcosβ (24)

wheredL anddD are the lift and drag forces on the blade element respectively.
dL and dD can be found from the definition of the lift and drag coefficients as
follows:

dL =CL
1
2

ρW 2cdr (25)

dD =CD
1
2

ρW 2cdr (26)

Lift and Drag coefficients for a NACA 0012 aerofoil are shown in Figure7, this
graph shows that for low values of incidence the aerofoil successfully produces a
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Figure 7: Lift and Drag Coefficients for a NACA 0012 Aerofoil

large amount of lift with little drag. At aroundi = 14◦ a phenomenon known as
stall occurs where there is a massive increase in drag and a sharp reduction in lift.

If there areB blades, combining Equation23 and equation25 it can be shown
that:

dFx = B
1
2

ρW 2(CL sinβ+CD cosβ)cdr (27)

dFθ = B
1
2

ρW 2(CL cosβ−CD sinβ)cdr (28)

The Torque on an element,dT is simply the tangential force multiplied by the
radius.

dT = B
1
2

ρW 2(CL cosβ−CD sinβ)crdr (29)

The effect of the drag force is clearly seen in the equations, an increase in thrust
force on the machine and a decrease in torque (and power output).

These equations can be made more useful by noting thatβ andW can be ex-
pressed in terms of induction factors etc. (Equations21 and22). Substituting and
carrying out some algebra yields:

dFx = σ′πρ
V 2(1−a)2

cos2 β
(CL sinβ+CD cosβ)rdr (30)

dT = σ′πρ
V 2(1−a)2

cos2 β
(CL cosβ−CD sinβ)r2dr (31)
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whereσ′ is called the local solidity and is defined as:

σ′ =
Bc
2πr

(32)

5 Tip Loss Correction

At the tip of the turbine blade losses are introduced in a similar manner to those
found in wind tip vorticies on turbine blades. These can be accounted for inBEM
theory by means of a correction factor.

This correction factorQ varies from 0 to 1 and characterises the reduction in
forces along the blade.

Q =
2
π

cos−1
[

exp

{

−

(

B/2[1− r/R]
(r/R)cosβ

)}]

(33)

The results from cos−1 must be in radians. The tip loss correction is applied to
Equation7 and Equation17which become:

dFx = QρV 2
1 [4a(1−a)]πrdr (34)

dT = Q4a′(1−a)ρV Ωr3πdr (35)

6 Blade Element Momentum Equations

We now have four equations, two dervied from momentum theory which express
the axial thrust and the torque in terms of flow parameters (Equations35and34):

dFx = QρV 2
1 [4a(1−a)]πrdr (36)

dT = Q4a′(1−a)ρV Ωr3πdr (37)

We also have two quations derived from a consideration of blade forceswhich
express the axial force and torque in terms of the lift and drag coefficients of the
aerofoil (Equations30and31):

dFx = σ′πρ
V 2(1−a)2

cos2 β
(CL sinβ+CD cosβ)rdr (38)

dT = σ′πρ
V 2(1−a)2

cos2 β
(CL cosβ−CD sinβ)r2dr (39)

To calculate rotor performance Equations35and34from a momentum balance
are equated with Equations30 and 31. Once this is done the following useful
relationships arise:
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a
1−a

=
σ′ [CL sinβ+CD cosβ]

4Qcos2 β
(40)

a′

1−a
=

σ′ [CL cosβ−CD sinβ]
4Qλrcos2β

(41)

Equation40and41are used in the blade design procedure.

7 Power Output

The contribution to the total power from each annulus is:

dP = ΩdT (42)

The total power from the rotor is:

P =
∫ R

rh

dPdr =
∫ R

rh

ΩdT dr (43)

Whererh is the hub radius. The power coefficientCP is given by:

CP =
P

Pwind
=

∫ R
rh

ΩdT
1
2ρπR2V 3

(44)

Using Equation31 it is possible to develop an integral for the power coefficient
directly. After some algebra:

CP =
8
λ2

∫ λ

λh

Qλ3
r a′(1−a)

[

1−
CD

CL
tanβ

]

dλr (45)

8 Blade Design Procedure

1. Determine the rotor diameter required from site conditions andP=CPη1
2ρπR2V 3

where:

• P is the power output

• CP is the expect coefficient of performance (0.4 for a modern three
bladed wind turbine)

• η is the expected electrical and mechanical efficiencies (0.9 would be
a suitable value)

• R is the tip radius

• V is the expected wind velocity

2. Choose a tip speed ratio for the machine. For water pumping pick 1< λ < 3
(which gives a high torque) and for electrical power generation pick 4< λ <
10

13
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3. Choose a number of bladesB, using Table1, which is based on practical
experience.

4. Select an aerofoil. Forλ< 3 curved plates can be used rather than an aerofoil
shape.

5. Obtain and examine lift and drag coefficient curves for the aerofoil inques-
tion. Note that different aerofoils may be used at different spans of theblade,
a thick aerofoil may be selected for the hub to give greater strength.

6. Choose the design aerodynamic conditions for each aerofoil. Typicallyselect
80% of the maximum lift value, this choice effectively fixes the blade twist.
On long blades a very large degree of twist is required to obtain 80% of
the maximum lift near the hub. This is not neccesarily desireable as the hub
produces only a small amount of the power output, a compromise is to accept
that the aerofoils will have very large angles of attack at the hub.

7. Choose a chord distribution of the aerofoil. There is no easily physically
accessible way of doing this but a simplification of an ideal blade is given
by:

C =
8πr cosβ

3Bλr
(46)

This gives a moderately complex shape and a linear distribution of chord
may be considerably easier to make.

8. Divide the blade intoN elements. Typically 10 to 20 elements would be
used.

9. As a first guess for the flow solution use the following equations. These
are based on an ideal blade shape derived with wake rotation, zero drag and
zero tip losses. Note that these equations provide aninitial guess only. The
equations are given as follows:

β = 90◦−
2
3

tan−1
(

1
λr

)

(47)

a =

(

1+
4cos2 β

σ′CL sinβ

)−1

(48)

a′ =
1−3a
4a−1

(49)

10. Calculate rotor performance and then modify the design as necessary. This
is an iterative process.

The essential outputs of a wind turbine design are the number of blades, the
aerofoil shape, the chord distribution and the twist distribution. Although thede-
sign procedure above provides some simple recomendations it is quite likely the
designer will have to spend a considerable amount of time refinining the twist and
chord distribution to reach an acceptable solution.

14
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λ B
1 8-24
2 6-12
3 3-6
4 3-4

more than 4 1-3

Table 1: Number of Blades

9 Example using BEM Theory

The application of BEM can be confusing as it can be used to either to designi.e.
selectγ andc or to analyse the performance of a blade. In order to make the theory
more tractable an example is given here for the analysis of a small turbine section.

Example
Calculate the power output from the turbine described in Table2. The
turbine has a tip radius of 5 m, and will operate in a wind speed of
7 m/s, a tip speed ratio of 8 and three blades. Assume that the tip
loss and the drag coefficient are zero. The turbine uses a NACA 0012
aerofoil.

The solution for a given blade cannot be found directly from the equations but
an iterative solution is required. There is more than one way to carry this out,in
this document a solution based on guesses fora anda′ and subsequent iteration.

The dragCD is zero and the tip loss correctionQ is one. The equations to be
solved therefore reduce to:

tanβ =
λr(1+a′)
(1−a)

(50)

a
1−a

=
σ′ [CL sinβ]

4cos2 β
(51)

a′

1−a
=

σ′CL

4λr cosβ
(52)

The algorithm for an iterative solution is as follows:

1. Guessa anda′

2. Calculateλr andβ

3. Look upCL andCD for the appropriate incidence angle

4. Calculatea anda′ again.

15
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r / [m] γ /[◦] c /[m]
0.2 61.0 0.70
1 74.3 0.71
2 84.9 0.44
3 89.1 0.30
4 91.3 0.23
5 92.6 0.19

Table 2: Example Turbine

9.1 5m Radius

To demonstrate the operation of the procedure, conditions at the tip (r = 5m) will
be calculated first.

For conditions at the flow tip:

σ′ =
Bc
2πr

=
3×0.19

2π5
= 0.01814 (53)

Equation47 will be used to estimate the relative flow angleβ, “first guesses”
for a anda′ will also be calculated.

β = 90◦−
2
3

tan−1
(

1
8

)

(54)

⇒ β = 85.2◦ (55)

Now γ is 92.6◦ so the incidencei is about 7.4◦, examining the NACA 0012 Lift
and Drag Coefficient plot (See Figure7, this gives a lift coefficient of around 0.85.

We can then use our two equations for the first guess fora anda′ to calculate
“first guesses” for these two parameters.

a =

(

1+
4cos2 β

σ′CL sinβ

)−1

(56)

⇒ a =

(

1+
4×cos285.2◦

0.01814×0.85×sin85.2◦

)−1

= 0.3543 (57)

a′ =
1−3a
4a−1

=
1−3×0.3543
4×0.3543−1

=−0.1592 (58)

Now a′ being less than zero is illogical, but will suffice as the starting point for
our iterative procedure. Having determined a suitable starting point we nowbegin
the iteration proper.
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9.1.1 Iteration 1

• Usea anda′ calculateβ

β = tan−1
(

λr(1+a′)
1−a

)

(59)

⇒ β = tan−1 8× (1−0.1592)
1−0.3543

= 84.5◦ (60)

• Calculate incidencei and thenCL

i = γ−β = 92.6◦−84.5◦ = 8.05◦ (61)

So from Figure7 CL = 1

• Calculate new values ofa anda′ using Equations51and52 respectively.

a =

(

1+
4cos2 β

σ′CL sinβ

)−1

(62)

⇒ a =

(

1+
4×cos284.5◦

0.01814×1×sin84.5◦

)−1

= 0.2488 (63)

a′ =

[

σ′CL

4λr cosβ

]

(1−a) (64)

⇒ a′ =

[

0.01814×1
4×8×cos84.5◦

]

(1−0.2488) = 0.0030 (65)

• Select new values ofa anda′, here we simply use the values just calculated,
i.e. a = 0.2488 anda′ = 0.0030. Note that although we started off with
negative value ofa′ the solution is rapidly converging to a more sensible
value.

9.1.2 Iteration 2

• Usea anda′ calculateβ

β = tan−1
(

λr(1+a′)
1−a

)

(66)

⇒ β = tan−1 8× (1+0.0030)
1+0.2488

= 84.6◦ (67)

• Calculate incidencei and thenCL

i = γ−β = 92.6◦−84.6◦ = 8.0◦ (68)

So from Figure7 CL = 1

17
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• Calculate new values ofa anda′ using Equations51and52 respectively.

a =

(

1+
4cos2 β

σ′CL sinβ

)−1

(69)

⇒ a =

(

1+
4×cos284.6◦

0.01814×1×sin84.6◦

)−1

= 0.3387 (70)

a′ =

[

σ′CL

4λr cosβ

]

(1−a) (71)

⇒ a′ =

[

0.01814×1
4×8×cos84.6◦

]

(1−0.3387) = 0.0040 (72)

• Select new values ofa anda′, here we simply use the values just calculated,
i.e. a = 0.3387 anda′ = 0.0040

9.1.3 Iteration 3

• Usea anda′ calculateβ

β = tan−1
(

λr(1+a′)
1−a

)

(73)

⇒ β = tan−1 8× (1+0.0040)
1+0.3387

= 85.3◦ (74)

• Calculate incidencei and thenCL

i = γ−β = 92.6◦−85.3◦ = 7.3◦ (75)

So from Figure7 CL ≈ 1

• Calculate new values ofa anda′ using Equations51and52 respectively.

a =

(

1+
4cos2 β

σ′CL sinβ

)−1

(76)

⇒ a =

(

1+
4×cos285.3◦

0.01814×1×sin85.3◦

)−1

= 0.3983 (77)

a′ =

[

σ′CL

4λr cosβ

]

(1−a) (78)

⇒ a′ =

[

0.01814×1
4×8×cos85.3◦

]

(1−0.3983) = 0.0041 (79)

• Select new values ofa anda′, again we simply use the values just calculated,
i.e. a = 0.3983 anda′ = 0.0041

18
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Step ∆a ∆a′

1 -0.1070 0.1622
2 0.0900 0.0010
3 0.0595 0.0001

Table 3: Convergence of the 5m Solution

r / [m] c / [m] γ /[◦] a / [-] a′ / [-] i / [◦] β / [◦]
0.2 0.70 61.0 0.2260 0.8994 22.9 38.1
1.0 0.71 74.3 0.2443 0.0676 8.2 66.1
2.0 0.44 84.9 0.2497 0.0180 7.9 77.0
3.0 0.30 89.1 0.2533 0.0081 7.9 81.2
4.0 0.23 91.3 0.2557 0.0046 7.9 83.4
5.0 0.19 92.6 0.2581 0.0030 7.9 84.7

Table 4: Solutions at all points.

The process should by now be clear. This process is tedious to do by hand and
for more than a simple calculation it is preferable to use a spreadsheet or program to
carry out the sum. An example spreadsheet should be available in the same location
that you found this document for example at theauthor’s website.2 The spreadsheet
was created using the Openoffice.org “Calc” spreadsheet program version 1.1.5.
You can read this spreadsheet into a number of packages including LibreOffice
which can be obtained fromthe LibreOffice website.3.

It is worth examining the differences between our successive calculations of a
anda′ to see if we are actually making progress towards a solution. This is shown
in Table3, which shows that the difference between successive values ofa anda′

rapidly diminishes as the solution progresses.

9.2 Additional Radial Locations

The example spreadsheet calculates a solution at all blade locations using an iden-
tical procedure. The main results are summarised in Table4 which shows,a,a′ and
i for each blade span.

Equation45 shows how the total power can be calculated. HereQ = 1 and
CD = 0 so Equation45becomes:

CP =
8
λ2

∫ λ

λh

λ3
r a′(1−a)dλr (80)

Recall that trapezium rule:
∫ xn

x0

f (x)dx ≈
xn − x0

2n
[(yo + yn)+2(y1+ y2+ ...+ yn−1)] (81)

2http://www.dur.ac.uk/g.l.ingram
3http://www.libreoffice.org/
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r λr a a′ f (x) λ0−λn
2

∫
f (x)

0.20 0.32 0.2260 0.8994 0.0228 0.64 0.1484
1.00 1.60 0.2443 0.0676 0.2091 0.8 0.5208
2.00 3.20 0.2497 0.0180 0.4419 0.8 0.8915
3.00 4.80 0.2533 0.0081 0.6724 0.8 1.2598
4.00 6.40 0.2557 0.0046 0.9023 0.8 1.6263
5.00 8.00 0.2581 0.0030 1.1306

Sum of
∫

f (x) 4.45
CP 0.56

Table 5: Calculation of Power Coefficient.

In this example we setn = 1 and repeat for each portion of the blade. Sox
will be replaced byλr and f (x) = λ3

r a′(1−a) for each element. The calculation of
power coefficient is shown in Table5. The power coeficient is around 0.55 - which
is quite high but no account has been made of tip losses or the influence of drag.

10 Summary

This short report derives equations for the analysis of wind turbines using the blade
element method. These equations are then used in an example performance calcu-
lation and some simple guidelines for generated a blade shape are given.
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